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LETTER TO THE EDITOR 

Matrix mutual orthogonality and parameter independence 

D J Newman 
Department of Physics, University of Hong Kong, Hong Kong 

Received 18 August 1981 

Abstract. It is shown that uncorrelated parameters can be derived from a data matrix if 
Tr(EZ) is minimised rather than &et, ,  where E is the error matrix. 

It is well known that the linear least-squares fitting procedure determines uncorrelated 
parameters if orthogonal basis vectors are used in fitting a data vector (Hudson 1964). 
The problem that concerns us here is whether an analogous matrix basis A, exists in the 
case where we wish to fit a data matrix to a linear expression of the form Z,A,81L where 
ihe  8, are uncorrelated parameters. We begin by investigating the properties of 
‘mutually orthogonal’ matrices and then show how these are relevant in fitting 
parameters to spectroscopic data. 

The standard definition of mutual orthogonality of two matrices A,  B is Tr(ABt) = 
0 ,  where the dagger indicates the adjoint or Hermitian conjugate of B. This definition is 
appropriate in an inner product space of complex matrices (e.g. see Hoffman and Kunze 
1971). We shall, however, only be interested in the space of Hermitian matrices, so the 
above expression may be written in the simplified form Tr(AB) = 0. All the standard 
mathematical results for inner product spaces then apply. In particular, we can find a set 
of N 2  mutually orthogonal Hermitian matrices A, of dimension N x N, These matrices 
have a positive norm and can thus be normalised by requiring Tr(Ai)  = 1. We can 
therefore construct matrix bases A, which satisfy 

Tr(A,A,,) = a,,,. 

If A, is such a basis, then so is U’AU, where U is unitary. 
Consider, now, the linear least-squares problem of fitting an expression of the form 

Z,A,O, to a (Hermitian) data matrix Y. As there are at most N 2  data it is necessary to 
use physical arguments to truncate the basis so that the number of parameters 6, is 
M < N 2 .  Writing the deviation matrix E = Y - ZILA,OIL we can minimise the positive 
expression Tr(E2) with respect to the 8, to obtain the fitted values 

6, = Tr(A,Y). 

This result makes it apparent that the fitted values of the parameters 6, are uncor- 
related. A more formal proof can be given by constructing the variance/covariance 
matrix. 

We frequently wish to determine parameters OIL given only the eigenvalues of Y. In 
this case the relation between the basis sets corresponding to Y and the A, is not 
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known, so the fitting equation becomes 

E = Y -E UtA,UB, 
Ir 

where U is unitary, but otherwise undetermined. In this case the number of Ow, M, must 
be less than N. It is usual to use an iterative procedure to solve this problem, starting 
with guessed values of the and then carrying out a linear least-squares fit (with fixed 
U )  and diagonalising the last term alternately. 

Again, the final fit to the iterated basis UtA,U will be uncorrelated if we minimise 
Tr(E2). Reference to the literature (e.g. see Stedman 1971) shows, however, that this is 
not normally done. It is more usual to minimise C i ( ~ i i ) 2  which leads to correlated 
parameters 8,. It is therefore proposed that this method be avoided in future. 

If there are wide deviations in the uncertainty ci associated with different data it is 
usual to minimise & ( ~ ~ ~ / c ~ ) * .  The appropriate geqeralisation of our result would be to 
minimise Tr(a-’&a-’&) where a is the diagonal matrix of the vi. It would then be 
necessary to modify the basis orthogonality equation to read 

Tr(a-’A,a-lA,) = 0 

operators 7’:’ with matrix elements (Judd 1963) 

if p # v. 

In paramagnetic ion spectroscopy it is usual to associate parameters with the tensor 

= T(L:  k,  q ) M M ,  

where the first equality is given by the Wigner-Eckart theorem and the second defines 
the matrices T ( L :  k,  4). An orthogonality relation for the 3 j  symbols ( M  M,)  given by L k L  

ensures that the set of matrices T ( L :  k,  q )  (for a given L )  is mutually orthogonal. They 
can be normalised to unity by multiplying by ( 2 k l  + 1)1’2. 

This result shows that expressions of the type ZkqTf)Akq, which are used in fitting 
crystal field parameters Akq, give uncorrelated values of the Akq provided that a 
complete ( 2 L  + 1)’ matrix is used in the fit. In practice this is not always the case as the 
experimental data may not be complete. A second requirement to obtain uncorrelated 
parameters is that the data should be uncorrelated and all have the same limits of 
uncertainty. In cases where the data does not have uniform uncertainty the matrices 
W ” ~ T ( L :  k ,  q ) ~ ” ~  could be used in the fitting, and an appropriate transformation of 
the fitted parameters to the ‘usual’ Akq be made subsequently. This would not, 
however, result in uncorrelated values of the Akq. 

The above discussion refers to the fitting of coefficients of the single-electron 
operators T:’ to experimental data as is carried out in crystal field theory (Stedman 
197 1). The theory of irreducible tensor operators shows that similar considerations 
apply to many-electron operators. For example, the matrices of the coupled operator 
(T‘kl’T‘kz’)$’ (Judd 1963) can easily be shown to be orthogonal. In particular, the 
Slater parameters, which are the coefficients in the case K = Q = 0 and k l  = k2 (even), 
are uncorrelated if the data satisfy the required conditions. This case is of special 
interest because it is possible to diagonalise the fitting expression for two-electron 
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matrices from symmetry considerations alone, independent of the values of the 
coefficients. Then the fitting procedure reduces to a simple linear least-squares fit and 
the off -diagonal terms in 

In summary, we have shown that the parameters conventionally fitted to spec- 
troscopic data will be independent if the data span a fitting space in which the operators 
are orthogonal, the estimated errors of all data are equal, and Tr(e ’) is minimised rather 
than Xi&:. 

are identically zero. 

The author is grateful to Professor B R Judd and Mr W K Sze for focusing his mind on 
this problem and to Dr Y H Au-Yeung for clarifying the mathematical background. 
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